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Abstract
A novel result concerning Raman coupling schemes implemented using trapped
ions is obtained. By means of an operator perturbative approach, it is shown
that the complete time evolution of these systems can be expressed, with a
high degree of accuracy, as the product of two unitary evolutions. The first one
describes the time evolution related to an effective coarse grained dynamic. The
second is a suitable correction restoring the fine dynamics suppressed by the
coarse graining performed to adiabatically eliminate the nonresonantly coupled
atomic level. The case where a decoherence source is present is also studied.

PACS numbers: 39.10.+j, 42.55.Ye, 31.15.Md

1. Introduction

Trapped ions provide an effective platform for observing interesting aspects of quantum
mechanics and for realizing useful applications in the context of quantum computation [1–3].

In these traps, a time-dependent quadrupolar electromagnetic field is responsible for a
charged particle motion which may be kinematically assimilated to the motion of a massive spot
subjected to a quadratic potential. Such a circumstance provides the possibility of describing
the centre of mass of an ion confined into a rf Paul trap as a quantum harmonic oscillator
[4–6]. In addition, the ion possesses atomic degrees of freedom related to the electronic
motion around the nucleus [2, 4–7].

Acting upon the system via laser fields, it is possible to induce vibronic transitions
described by Jaynes–Cummings-like Hamiltonians [7, 8]. Such interactions are characterized
by nonlinearities governed by the so called Lamb–Dicke parameter, which in a spherically
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symmetric trap—the case we consider in this paper—is nothing but the ratio between the
width of the ion vibrational ground wavefunction and the laser wavelength. Controlling
the Lamb–Dicke parameter leaving unchanged the laser frequency would then provide the
possibility of implementing a wider variety of Hamiltonian models. Unfortunately, these two
parameters are strictly related, the Lamb–Dicke parameter being proportional to the inverse
of the wavelength, hence proportional to the laser frequency. Therefore, in a spherically
symmetric trap they cannot be independently adjusted.3 Nevertheless, such a possibility can
be achieved exploiting a fundamental property of Raman coupling schemes. In these couplings,
a three-level system is subjected to a far detuned �-scheme. Under some assumptions and
within approximations concerning the time scale used to observe the system, the dynamics
may be well enough described via an effective Hamiltonian thinkable as a Jaynes–Cummings-
like Hamiltonian related to an effective laser field, with frequency and wave vector given by
the differences between the corresponding parameters of the two real �-scheme lasers. Then,
changing the angle between the two real laser propagation directions leads to the possibility
of obtaining effective lasers such that the product of their wavelength and frequency is not
the velocity of light. The price to pay is the complete ignorance about the detailed system
dynamics at a fine time scale.

In this paper, we will try to overcome such a limit by means of a new approach. More
precisely, we will analyse the dynamics of a three-level trapped ion subjected to a � Raman
coupling scheme using a very convenient perturbative decomposition of the evolution operator
of the system. We will show that the Raman scheme time evolution can be factorized,
at the second perturbative order (hence with a high degree of accuracy), into two unitary
evolutions. The first one can be interpreted as the effective time evolution which may be
obtained adiabatically eliminating the far detuned atomic level from the coupling scheme
[9]. Such a dynamic concerns the coarse grained variables and is in accordance with already
well-known results [9]. The second unitary evolution introduces the correction necessary to
take into account the fine deviation from the coarse grained time evolution.

The same tools developed for studying the coherent dynamics of the Raman scheme
become fruitful for investigating the case where a decoherence source is considered. In more
detail, assuming that the far detuned level is an excited level with non-negligible decay rates
towards the other two levels, we are able to cast the master equation of the system in a very
convenient canonically equivalent form. This procedure sheds new light on the role played by
the adiabatically eliminated level in the occurrence of decoherence phenomena affecting the
effective coherent cycle involving the other two levels.

2. The physical system

The physical system on which we focus is a three-level harmonically trapped ion subjected
to a Raman coupling scheme involving atomic transitions. The relevant Schrödinger picture

3 In a linear trap—i.e. in a trap with strong confinement induced along a couple of axes and weaker harmonic binding
along the third axis, the ‘principal axis’—one can modify the incidence angle of the laser beam with respect to the
principal axis in order to control the Lamb–Dicke parameter, which, in this case (the degrees of freedom associated
with the non-principal axes being ignored), is proportional to the projection of the wave vector along this axis. In
an isotropic trap there is no principal axis and this trick makes no sense. A trick applicable to an isotropic trap is
to prepare a vibrational mode, say the one along the x-direction, for instance in a coherent state, while the other
two modes are left in the ground state. Then, exciting the system on the first red vibrational sideband, it turns out
that only the vibration along the x-axis contributes to the atom–light coupling, so allowing a tuning of the effective
Lamb–Dicke parameter by changing the incidence angle of the laser beam. However, we stress that this trick relies
on the preparation of the system in a specific initial state.
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Hamiltonian of the Raman �-scheme is then given by

Ĥ�(t) =
∑

l=1,2,3

h̄ωlσ̂ll + h̄ν
∑

α=x,y,z

â†
αâα + [h̄g13 e−i(�k13·�r−ω13t)σ̂13 + h.c.]

+ [h̄g23 e−i(�k23·�r−ω23t)σ̂23 + h.c.], (1)

where σ̂lm ≡ |l〉 〈m| (with l, m = 1, 2, 3), {|l〉} is the considered three atomic levels and {h̄ωl}
are the corresponding energies; âα(α = x, y, z) is the annihilation operator related to the
centre of mass harmonic motion along the direction α (we will denote the associated Fock
basis by

{
ψα

n

}
):

âx =
(µν

2h̄

)1/2
(

x̂ +
i

µν
p̂x

)
, . . .

with µ denoting the mass of the ion. For the sake of simplicity (but without loss of generality),
we have assumed to deal with a 3D degenerate parabolic trap with single frequency ν. The
two laser fields responsible for the coupling terms are characterized by complex strengths
(proportional to the laser amplitude and to the atomic dipole operator, and including the laser
phases), wave vectors and frequencies g13, �k13, ω13 and g23, �k23, ω23, respectively.

The auxiliary level |3〉 is assumed to be dipole coupled to both the levels |1〉 and |2〉 via
far detuned lasers. Precisely, the two laser frequencies are chosen in such a way that

� ≡ ω3 − ω1 − ω13 = ω3 − ω2 − ω23, (2)

where the detuning � satisfies the condition

|�| � |g13|, |g23|, ν. (3)

The analysis of such a Hamiltonian model has been already carried out, for instance in [9],
by means of the adiabatic elimination of the nonresonantly coupled atomic level |3〉, following
the path pointed out in [10, 11] and including the motional degrees of freedom. Indeed, due
to the large detuning, the transitions coupling levels |1〉 and |2〉 with the auxiliary level |3〉 are
very fast. Therefore, considering only coarse grained observables, meaning that the system is
observed at a ‘rough enough time scale’, effectively eliminates the far detuned level; namely,
at such a time scale, the only observables, and hence meaningful dynamical behaviours, are
the one involving levels |1〉 and |2〉 as a result of a time-averaging procedure which takes into
account the compound processes having |3〉 as an intermediate virtual level. Anyhow, this
procedure suppresses the fine dynamics, that is it sacrifices any information concerning the
fast dynamics the auxiliary level is involved in.

It must be also stressed that if the auxiliary level is an excited level with non-negligible
decay rates towards levels |1〉 and |2〉 the observable effects of the fast oscillations involving
level |3〉 should not be deleted by the coarse graining. In fact, one should expect that the
transitions to the auxiliary level, composed with decays, can gradually introduce decoherence
into the effective coherent cycle involving levels |1〉 and |2〉. This conjecture is actually
compatible with experimental observations [12]. We will discuss this aspect in section 5.

In the following we present a perturbative approach to the solution of the dynamical
problem related to Ĥ� overcoming the limit of the coarse graining, making it possible to
study also the fine dynamics discarded by the adiabatic elimination. The first step consists in
passing to a rotating frame, meaning that the time-dependent Hamiltonian Ĥ� is canonically
transformed via the operator

R̂(t) = e−iÂt , (4)
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where

Â = (ω3 − �)(σ̂11 + σ̂22 + σ̂33) − ω13σ̂11 − ω23σ̂22

= ω1σ̂11 + ω2σ̂22 + (ω3 − �)σ̂33, (5)

into the following time-independent rotating frame Hamiltonian:

Ĥ := R̂(t)†(Ĥ�(t) − Â)R̂(t) = h̄�Ĥ = h̄�(Ĥ 0 + Ĥ B + Ĥ�), (6)

where Ĥ is a dimensionless Hamiltonian which is the sum of the three Hermitian operators
Ĥ 0, Ĥ B and Ĥ� defined as


Ĥ 0 := σ̂33,

Ĥ B := ν
�

∑
α=x,y,z â†

αâα,

Ĥ� := [
g13

�
e−i�k13·�r σ̂13 + h.c.

]
+

[
g23

�
e−i�k23·�r σ̂23 + h.c.

]
.

(7)

Considering the assumption given by inequality (3), both Ĥ B and Ĥ� may be thought
of as perturbations with respect to Ĥ 0. In fact, introducing the dimensionless perturbative
parameter

λ := g

�
, g ≡ max{ν, |g13|, |g23|}, (8)

both Ĥ B and Ĥ� are first-order perturbations in λ:

Ĥ = Ĥ (λ) = Ĥ 0 + λ	
∑

α=x,y,z

â†
αâα + λ

∑
j=1,2

[	j3 e−i�kj3·�r σ̂j3 + h.c.], (9)

where 	 ≡ ν/g � 1, 	j,3 ≡ gj,3/g, |	j,3| � 1, and we note that, due to condition (3),
λ � 1. It is worth noting that the circumstance that Ĥ B is treated as a perturbation leads to
the eccentric situation of an unperturbed Hamiltonian, Ĥ 0, wherein the bosonic degrees of
freedom are absent. Nevertheless, as we shall see, such a mathematical artifice reveals fruitful
in order to succeed in factorizing the coarse grained dynamics and its fine correction.

Our solving procedure relies on a suitable canonical transformation eiẐ(λ) of the rotating
frame Hamiltonian such that

eiẐ(λ)Ĥ e−iẐ(λ) = h̄� eiẐ(λ)Ĥ (λ) e−iẐ(λ) = h̄�(Ĥ 0 + Ĉ(λ)), (10)

where Ĉ(λ), Ẑ(λ) depend analytically on the perturbative parameter λ and Ĉ(λ) is a constant
of motion with respect to the unperturbed dynamics, i.e., [Ĥ 0, Ĉ(λ)] = 0. This transformation
allows us to give a very convenient decomposition of the evolution operator associated with
the rotating frame Hamiltonian, namely

exp
(
− i

h̄
Ĥt

)
= e−iẐ(λ) exp(i�Ĥ 0t) exp(i�Ĉ(λ)t) eiẐ(λ). (11)

At this point, truncating the power expansions

Ĉ(λ) = λĈ1 + λ2Ĉ2 + · · · + λnĈn + · · · , Ẑ(λ) = λẐ1 + λ2Ẑ2 + · · · + λnẐn + · · ·
at a given perturbative order, one obtains useful expressions of the evolution operator by
formula (11). This procedure has been developed in a general setting in [13, 14]. In the next
section, we want to recall briefly the mathematical background and to show how the operators
Ĉ1, Ĉ2, . . . , Ẑ1, Ẑ2, . . . can be computed by a suitable iterative process. Then, we will give
the explicit solutions for our case up to the second perturbative order.
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3. Perturbative analysis of the rotating frame Hamiltonian

Let Ĥu, Ĥp be Hermitian operators and assume that Ĥu has a purely discrete spectrum. Denote
by E0 < E1 < E2 < · · · the (possibly degenerate) eigenvalues of Ĥu and by P̂0, P̂1, P̂2, . . .

the associated eigenprojectors. Now, consider the operator Ĥ (λ) = Ĥu + λĤp, λ ∈ C, which
is Hermitian if λ is real. It is possible to show that, under certain conditions [15], there exist
positive constants r0, r1, r2, . . . and a simply connected neighbourhood I of zero in C such
that the following contour integral on the complex plane

P̂m(λ) = i

2π

∮
|E−Em|=rm

dE (Ĥ (λ) − E)−1, λ ∈ I,

defines a projection (P̂m(λ)2 = P̂m(λ)), which is an orthogonal projection for real λ, with
P̂m(0) = P̂m, and I 	 λ 
→ P̂m(λ) is an analytic operator-valued function. Moreover, the
range of P̂m(λ) is an invariant subspace for Ĥ (λ), hence

Ĥ (λ)P̂m(λ) = P̂m(λ)Ĥ (λ)P̂m(λ), (12)

and there exists an analytic family Û (λ) of invertible operators such that

P̂m = Û (λ)P̂m(λ)Û(λ)−1, Û (0) = Id, (13)

and Û (λ) = eiẐ(λ), λ ∈ I, with Ẑ(λ∗) = Ẑ(λ)† (hence, for real λ, Ẑ(λ) is Hermitian and
Û (λ) is unitary), where I 	 λ 
→ Ẑ(λ) is analytic. One can easily show that the function
λ 
→ Û (λ) is not defined uniquely by condition (13) even in the simplest case when Ĥu has a
non-degenerate spectrum. Anyway, the nonuniqueness in the definition of Û (λ) is not relevant
if one is only interested in obtaining an expression of the evolution operator associated with
Ĥ (λ) of the general form (11). We will see soon that there is a natural condition which fixes
a unique solution for Û (λ).

Now, let us define the operator

K̂(λ) := Û (λ)Ĥ (λ)Û(λ)−1, (14)

which, for real λ, is unitarily equivalent to Ĥ (λ). Using relations (12) and (13), we find

K̂(λ)P̂m = Û (λ)Ĥ (λ)P̂m(λ)Û(λ)−1 = Û (λ)P̂m(λ)Ĥ (λ)P̂m(λ)Û(λ)−1

and hence K̂(λ)P̂m = P̂mK̂(λ)P̂m. It follows that [Ĥu, K̂(λ)] = 0 and then we obtain the
following important decomposition formula:

Û (λ)Ĥ (λ)Û(λ)−1 = Ĥu + Ĉ(λ), (15)

where [Ĉ(λ), Ĥu] = 0, i.e., Ĉ(λ) is a constant of the motion with respect to the time evolution
generated by Ĥu. At this point, we can obtain perturbative expressions of the unknown
operators Ĉ(λ), Û(λ) by means of a recursive algebraic procedure.

Indeed, since the functions λ 
→ Ĉ(λ) and λ 
→ Ẑ(λ) are analytic in I and
Ĉ(0) = Ẑ(0) = 0, we can write

Ĉ(λ) =
∞∑

n=1

λnĈn, Ẑ(λ) =
∞∑

n=1

λnẐn, λ ∈ I. (16)

In order to determine the operators {Ĉn} and {Ẑn}, we substitute the exponential form eiẐ(λ)

of Û (λ) in formula (15) thus getting

Ĥ (λ) +
∞∑

n=1

in

n!
adn

Ẑ(λ)
Ĥ (λ) = Ĥu + Ĉ(λ),

where we recall that adẐ(λ)Ĥ (λ) := [Ẑ(λ), Ĥ (λ)].
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Next, inserting the power expansions (16) in this equation, in correspondence to the
various perturbative orders, we obtain the following set of conditions:

Ĉ1 − i[Ẑ1, Ĥu] − Ĥp = 0, [Ĉ1, Ĥu] = 0

Ĉ2 − i[Ẑ2, Ĥu] + 1
2 [Ẑ1, [Ẑ1, Ĥu]] − i[Ẑ1, Ĥp] = 0, [Ĉ2, Ĥu] = 0

...

where we also have taken into account the additional constraint [Ĉ(λ), Ĥu] = 0. This infinite
set of equations can be solved recursively. The first equation, together with the first constraint,
determines Ẑ1 up to an operator commuting with Ĥu and Ĉ1 uniquely and so on. It is convenient
to eliminate the arbitrariness in the determination of the operators {Ẑn} choosing the minimal
solution characterized by the additional condition

∑
m P̂mẐnP̂m = 0, n = 1, 2, . . . .

In our particular case, we have the following identifications:{
Ĥu ≡ Ĥ 0,

λĤp ≡ Ĥ B + Ĥ�.
(17)

Note that the two (infinitely degenerate) eigenspaces of the unperturbed Hamiltonian Ĥ 0 are
associated with the eigenprojectors

{P̂m}m=g,e = {P̂g ≡ 1B ⊗ (σ̂11 + σ̂22), P̂e ≡ 1B ⊗ (σ̂33)}, (18)

where

1B ≡
∑

nx,ny ,nz

( ∣∣ψx
nx

〉 〈
ψx

nx

∣∣ ) ⊗ · · · ⊗ ( ∣∣ψz
nz

〉 〈
ψz

nz

∣∣ ) (19)

is the identity in the vibrational Hilbert space. Accordingly, for the operators
{Ĉ1, Ẑ1, Ĉ2, Ẑ2, . . .} forming the minimal solution, we get at the first perturbative order
the following expressions:{

λĈ1 = ∑
m=e,g P̂m(ĤB + Ĥ�)P̂m,

λẐ1 = i
∑

j �=l εj l P̂j (Ĥ B + Ĥ�)P̂l,
(20)

with εge = 1 = −εeg . Similarly, at the second order, we have{
λ2Ĉ2 = ∑

m=e,g P̂m{iλ[Ẑ1, Ĥ B + Ĥ�] − 1
2λ2[Ẑ1, [Ẑ1, Ĥ 0]]}P̂m,

λ2Ẑ2 = i
∑

j �=l εj l P̂j {iλ[Ẑ1, Ĥ B + Ĥ�] − 1
2λ2[Ẑ1, [Ẑ1, Ĥ 0]]}P̂l .

(21)

Eventually, performing explicit calculations, we find that

λĈ1 = Ĥ B, (22)

λ2Ĉ2 = −|g13|2
�2

σ̂11 − |g23|2
�2

σ̂22 +
|g13|2 + |g23|2

�2
σ̂33 −

(g13g32

�2
e−i�k13·�r ei�k23·�r σ̂12 + h.c.

)
,

(23)

where we have set g3j ≡ g∗
j3, and

λẐ1 = i
(g13

�
e−i�k13·�r σ̂13 − h.c.

)
+ i

(g23

�
e−i�k23·�r σ̂23 − h.c.

)
, (24)

λ2Ẑ2 = ν

�

{(g13

�
X̂13σ̂13 +

g31

�
X̂31σ̂31

)
+

(g23

�
X̂23σ̂23 +

g32

�
X̂32σ̂32

)}
, (25)

where {
X̂j3 := i

[
e−i�kj3·�r ,

∑
α=x,y,z â†

αâα

]
,

X̂3j := i
[
ei�kj3·�r ,

∑
α=x,y,z â†

αâα

] = X̂
†
j3,

with j = 1, 2.
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The interpretation of this result leads to a very interesting fact. Indeed, it turns out that
once the unitary transformation eiZ(λ) has been applied to the rotating frame Hamiltonian Ĥ

(recall equation (10)), the time evolution of the system is described, at the second order in the
parameter λ, by the Hamiltonian

h̄�(Ĥ 0 + λĈ1 + λ2Ĉ2) = Ĥ12 + Ĥ3, (26)

where, in order to display a more transparent formula, we set

Ĥ12 := h̄ν
∑

α=x,y,z

(
â†

αâα

) ⊗ (σ̂11 + σ̂22) + h̄ω̆1σ̂11 + h̄ω̆2σ̂22 + [h̄g12 e−i�k12·�r σ̂12 + h.c.], (27)

Ĥ3 := h̄ν
∑

α=x,y,z

(
â†

αâα

) ⊗ σ̂33 + h̄(� + ω̆3)σ̂33, (28)

with

ω̆j = −|gj3|2
�

, j = 1, 2, ω̆3 = |g13|2 + |g23|2
�

,

g12 = g13g32

�
, �k12 = �k13 − �k23.

Thus, the transformed Hamiltonian is the sum of two decoupled Hamiltonians Ĥ12 and Ĥ3,
[Ĥ12, Ĥ3] = 0, ‘living’, respectively, in the ranges of the orthogonal projectors P̂g and P̂e.
This is a consequence of the fact that [P̂m, Ĉn] = 0, m = g, e, n = 1, 2, . . . . It is worth noting
that the Hamiltonian Ĥ12 can be considered as the rotating frame Hamiltonian of a trapped
two-level ion in interaction with a laser field characterized by the following parameters:{

ω12 ≡ ω13 − ω23 = ω2 − ω1,

�k12 ≡ �k13 − �k23.
(29)

This effective coupling can be compared with the result found performing the adiabatic
elimination of the level |3〉 (see [9]). We will come back to this point in the next section.

4. Dynamics of the Raman scheme

The question of what the complete dynamics of the system is now arises. First, it will be
convenient to adopt the following notation. Given a couple of functions f and h of the
perturbative parameter λ, if f (λ) = h(λ) + O(λ3), we will simply write

f (λ)
λ2

≈ h(λ).

Next, let us denote by T̂� the evolution operator associated with the Raman scheme:

ih̄

(
d

dt
T̂�

)
(t) = Ĥ�(t)T̂�(t), T̂�(0) = Id. (30)

Expressing T̂� in terms of the evolution operator associated with the rotating frame
Hamiltonian yields

T̂�(t) = R̂(t) exp
(
− i

h̄
Ĥt

)
. (31)

Now, according to what we have shown in the previous section, we have

T̂ (t) := exp
(
− i

h̄
Ĥt

)
= e−iẐ(λ) exp(−i� eiẐ(λ)Ĥ (λ) e−iẐ(λ)t) eiẐ(λ)

λ2

≈ e−i(λẐ1+λ2Ẑ2) e−i�(Ĥ 0+λĈ1+λ2Ĉ2)t ei(λẐ1+λ2Ẑ2), (32)
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where we have truncated the power expansions of Ẑ(λ) and Ĉ(λ) at the second order
in λ. Formula (32) provides an approximate expression of the evolution operator in the
remarkable form of a one-parameter group of unitary transformations. Nevertheless, in order
to achieve an approximate expression allowing a direct comparison with the coarse grained
dynamics, we still need to perform some manipulation. To this aim, observe that, since the
commutators [λ2Ĉ2, λẐ1 + λ2Ẑ2] and [λ2Ĉ2, Ĥ 0 + λĈ1] = [λ2Ĉ2, λĈ1] are of the third order
in λ, maintaining our degree of approximation we can write

e−i(λẐ1+λ2Ẑ2) e−i�(Ĥ 0+λĈ1+λ2Ĉ2)t
λ2

≈ e−i(λẐ1+λ2Ẑ2) e−i�λ2Ĉ2t e−i�(Ĥ 0+λĈ1)t

λ2

≈ e−i�λ2Ĉ2t e−i(λẐ1+λ2Ẑ2) e−i�(Ĥ 0+λĈ1)t .

Therefore, we can manipulate the second-order expression (32) of T̂ (t) as follows:

T̂ (t)
λ2

≈ e−i�λ2Ĉ2t e−i(λẐ1+λ2Ẑ2) e−i�(Ĥ 0+λĈ1)t ei(λẐ1+λ2Ẑ2)

= e−i�λ2Ĉ2t e−i�(Ĥ 0+λĈ1)tei�(Ĥ 0+λĈ1)t e−i(λẐ1+λ2Ẑ2) e−i�(Ĥ 0+λĈ1)t ei(λẐ1+λ2Ẑ2).

Finally, we find a remarkable decomposition of T̂ :

T̂ (t)
λ2

≈ T̂e(t)T̂f(t), (33)

where we have set

T̂e(t) := exp(−i�(Ĥ 0 + λĈ1 + λ2Ĉ2)t), (34)

T̂f(t) := exp(−i(λẐ1(t) + λ2Ẑ2(t))) exp(i(λẐ1 + λ2Ẑ2)), (35)

with Ẑk(t) ≡ ei�(Ĥ 0+λĈ1)t Ẑk e−i�(Ĥ 0+λĈ1)t , k = 1, 2. It is worth emphasizing that by a
completely analogous procedure4, we also get

T̂ (t)
λ2

≈ T̂ ′
f (t)T̂e(t), T̂ ′

f (t) := T̂f(−t)†. (36)

Note that, due to the specific dependence of T̂f on t, one has T̂ ′
f (t) �= T̂f(t).

In the light of formula (33) or (36), the rotating frame time evolution given by T̂ may be
thought of as a process consisting of two fundamental components. One of these is an effective
time evolution, described by T̂e, in which levels |1〉 and |2〉 are decoupled from level |3〉. The
other component, the one T̂f (or T̂ ′

f ) is responsible for, is a correction to T̂e and involves fast
transitions (the operators Ẑ1(t) and Ẑ2(t) oscillate at the detuning frequency �) from and to
the third atomic level. Considering the complete time evolution (31), observe that the unitary
evolution described by R̂T̂e corresponds to the effective dynamics obtained in [9] restricting
the analysis to the coarse grained observables. In fact, R̂T̂e is the evolution operator associated
with the time-dependent effective Hamiltonian

Ĥ e = Ĥ (12)
e + Ĥ (3)

e , (37)

where

Ĥ (12)
e (t) := h̄ν

∑
α=x,y,z

(
â†

αâα

) ⊗ (σ̂11 + σ̂22) + h̄(ω1 + ω̆1)σ̂11 + h̄(ω2 + ω̆2)σ̂22

+ [h̄g12 e−i(�k12·�r−ω12t)σ̂12 + h.c.], (38)

Ĥ (3)
e := h̄ν

∑
α=x,y,z

(
â†

αâα

) ⊗ σ̂33 + h̄(ω3 + ω̆3)σ̂33. (39)

4 The calculation may be carried out directly, i.e., step by step as in the previous case but changing the reordering of
the exponentials in (32) and subsequent formulae, or from (33) exploiting the fact that T̂ (t) = T̂ (−t)†.
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We remark that we have deduced this result analytically; no adiabatic approximation has been
performed. We also stress that a relevant difference between T̂e and T̂f consists in the kind
of time dependence. Indeed, on one hand, the unitary evolution T̂e forms a one-parameter
group, hence it is expressible as the exponential of a generator multiplied by t. It follows that a
truncated power expansion of the exponential retains its validity only on a finite time span. On
the other hand, T̂f can be expressed as the exponential of an operator whose time dependence
involves only sinusoidal factors. In fact, we have

T̂f(t)
λ2

≈ e−i(λ(Ẑ1(t)−Ẑ1)+λ2(Ẑ2(t)−Ẑ2)) e
1
2 [λẐ1(t)+λ2Ẑ2(t),λẐ1+λ2Ẑ2]

λ2

≈ e−i(λ(Ẑ1(t)−Ẑ1)+λ2(Ẑ2(t)−Ẑ2)) e
1
2 λ2[Ẑ1(t),Ẑ1].

It then follows that the truncated expansion

T̂f(t)
λ2

≈ 1 − iλ(Ẑ1(t) − Ẑ1) − λ2
(
i(Ẑ2(t) − Ẑ2) + 1

2 (Ẑ1(t) − Ẑ1)
2 − 1

2 [Ẑ1(t), Ẑ1]
)

= 1 − iλ(Ẑ1(t) − Ẑ1) − λ2( 1
2

(
Ẑ1(t)

2 + Ẑ2
1

) − Ẑ1(t)Ẑ1 + i(Ẑ2(t) − Ẑ2)
)

(40)

is legitimated independently on time.
Let us summarize the results obtained up to now. We have shown that the standard

adiabatic elimination technique provides an effective dynamics, described by R̂T̂e, that differs
from the complete second-order dynamics of the Raman scheme for the presence of another
unitary evolution which can be cast in the form of the exponential of a rapidly oscillating
operator function of time. Therefore, the factorization into a coarse grained and a fine
dynamics given by equation (33) makes the correction to the adiabatic approximation solution
very readable and easy to be calculated, in view of the truncated expression (40). It is
worth noting that the corrections due to T̂f are associated with the operators λẐ1, λẐ1(t)

and λ2Ẑ2, λ
2Ẑ2(t), which are, respectively, of the first- and second-order in the perturbative

parameter; thus, they cannot be neglected at a fine time scale. Precisely, they provide terms
oscillating at the detuning frequency which couple levels |1〉 and |2〉 with the auxiliary level.
Hence, as expected, the fine dynamics is very fast. Such a detailed knowledge of the complete
dynamics should become of practical interest in connection with time resolution improvements
of experiments. Moreover, if the auxiliary level |3〉 is an excited level with non-negligible
decay rates towards the other two levels, one should expect that these fast transitions, in
association with decays, can become an important source of decoherence for the system, with
observable effects at a time scale much larger than |�|−1.

5. Decoherence effects

Up to this point, we have considered the coherent dynamics only of the trapped ion Raman
scheme. However, as anticipated in section 2, there is experimental evidence that the
decoherence effects can play a non-negligible role. Precisely, in observations of Rabi
oscillations of a trapped 9Be+, significant damping effects, increasing with increasing motional
excitation, have been reported [12]. It has been suggested that the main decoherence source
could be technical noise, but the analysis of various possible mechanisms shows that they
are too small to explain the observations [16]. Di Fidio and Vogel [17] have then proposed
(and we share their idea) that the decoherence source is inherent in the physical system itself.
By means of the adiabatic elimination of the auxiliary level, they derive a master equation
which involves levels |1〉 and |2〉, and perform numerical simulations in good agreement with
experimental data, except for the dependence of damping on motional excitation.

In our opinion, a more transparent interpretation of these decoherence effects can be given
taking into account the fast transitions—let us call them anomalous transitions—that couple
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levels |1〉 and |2〉 with the auxiliary level |3〉 which in current literature (by virtue of the
adiabatic elimination) is considered merely as a ‘dumb’ level. Indeed, in general, the auxiliary
level |3〉 can be an excited level characterized by some decay rates γ3↓1, γ3↓2 � 0 towards
levels |1〉 and |2〉. Thus, it is quite natural to expect that the compound effect of anomalous
transitions and decays from the auxiliary level is to gradually introduce decoherence into the
effective coherent cycle involving levels |1〉 and |2〉. We will show that this intuition is correct.

In order to take into account the mentioned decoherence effects, let us consider the master
equation governing the evolution of the density matrix of the system:


̇ = L(h̄−1Ĥ�(t);√
γ3↓1 σ̂31,

√
γ3↓2 σ̂32)
, (41)

where L(·)[·] is the Lindblad superoperator defined by

L(Ĝ; F̂1 , F̂2 )
 = −i[Ĝ, 
] +
∑
j=1,2

(
F̂

†
j 
F̂j − 1

2

{
F̂j F̂

†
j , 


})
, (42)

with {·, ·} denoting the anti-commutator. Note that, for γ3↓1 = γ3↓2 = 0, equation (41) reduces
to the standard Schrödinger equation of the Raman scheme, while, if at least one of the decay
rates is nonzero, it describes the Raman scheme with relaxation of the auxiliary level |3〉.

As in section 2, the first step is to pass to the interaction picture associated with the
canonical transformation R̂(t):


int(t) = R̂(t)†
(t)R̂(t). (43)

In this picture, since

L(R̂(t)†(H�(t) − Â)R̂(t);√
γ3↓1 R̂(t)†σ̂31R̂(t), 1→2) = L(�Ĥ ;√

γ3↓1 σ̂31, 1→2),

the master equation reads


̇int(t) = L(�Ĥ ;√
γ3↓1 σ̂31,

√
γ3↓2 σ̂32)
int(t). (44)

At this point, we can use the unitary transformation Ŵ ≡ exp(iλẐ1 + iλ2Ẑ2) described in
section 3. Introducing the new effective density operator


e(t) := Ŵ
int(t)Ŵ
†, (45)

we have


̇e(t) = L(h̄−1(Ĥ12 + Ĥ3);√
γ3↓1 Ŵ σ̂31Ŵ

†, 1→2)
e(t), (46)

Ĥ12 and Ĥ3 are defined, respectively, by equations (27) and (28). Now, if we assume
that |�| � γ3↓1, γ3↓2,5 it is a good approximation to retain in the power expansion of√

γ3↓1 Ŵ σ̂31Ŵ
† only those terms that are at most linear in the perturbative parameter λ,

namely
√

γ3↓1 Ŵ σ̂31Ŵ
† ≈ √

γ3↓1 (σ̂31 − κ13(σ̂11 − σ̂33) − κ23σ̂21), (47)

where

κj3 ≡ gj3

�
exp(−i�kj3 · �r), j = 1, 2. (48)

Obviously, an analogous argument holds for
√

γ3↓2 Ŵ σ̂32Ŵ
†.

Eventually, for the dynamics of the effective density matrix, we obtain the following
master equation:


̇e(t) = L(h̄−1(Ĥ12 + Ĥ3); (c31σ̂31 + c3(1)3(�r)σ̂33) − (c21(�r)σ̂21 + c11(�r)σ̂11), 1 ↔ 2)
e(t),

(49)

where we have set
5 This condition is actually satisfied in experiments, see [17].
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c31 ≡ √
γ3↓1, c3(1)3(�r) ≡ √

γ3↓1κ13, (50)

c21(�r) ≡ κ23
√

γ3↓1, c11(�r) ≡ κ13
√

γ3↓1, (51)

and similar definitions hold with the exchange 1 ↔ 2. Note that, due to the dependence on
�r ∝ (

âx + â
†
x, ây + â

†
y, âz + â

†
z

)
of the coefficients (50) and (51), one expects a dependence on

motional excitation of the decoherence effects, in agreement with experimental observations
[12], as already mentioned.

In our opinion, the result obtained is very expressive. We started from a master equation
for the density matrix of the system, equation (41), in which the incoherent component of
the dynamics involves decays from the auxiliary level |3〉 to levels |1〉 and |2〉. Therefore, if
the anomalous transitions which couple levels |1〉 and |2〉 with the auxiliary level played no
relevant role in connection with the relaxation of this level, one could expect that the system
would evolve from any initial condition towards a coherent dynamics involving levels |1〉 and
|2〉 only. Experimental observations indicate that this is not the case. In fact, by virtue of the
unitary transformation Ŵ , we are able to observe the system in a ‘reference frame’ in which
the coherent dynamics of the subsystem {|1〉 , |2〉} is decoupled from that of the auxiliary
level, but the incoherent component of the dynamics involves population fluxes connecting
each couple of levels, with the effect of gradually introducing decoherence in the coherent
cycle involving levels |1〉 and |2〉. This is the physical content of equation (49). A detailed
study of this equation is beyond the scope of this paper. Our purpose for later work is to
investigate its solutions by quantum trajectory methods [18].
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